skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schuller, Ivan K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The spin Seebeck effect (SSE) is sensitive to thermally driven magnetic excitations in magnetic insulators. Vanadium dioxide in its insulating low-temperature phase is expected to lack magnetic degrees of freedom, as vanadium atoms are thought to form singlets upon dimerization of the vanadium chains. Instead, we find a paramagnetic SSE response in V⁢O2 films that grows as the temperature decreases below 50 K. The field and temperature-dependent SSE voltage is qualitatively consistent with a general model of paramagnetic SSE response and inconsistent with triplet spin transport. Quantitative estimates find a spin Seebeck coefficient comparable in magnitude to that observed in strongly magnetic materials. The microscopic nature of the magnetic excitations in V⁢O2 requires further examination. 
    more » « less
  2. We present a novel heterostructured approach to disentangle the mechanism of electrical transport of the strongly correlated PrNiO3, by placing the nickelate under the photoconductor CdS. This enables the injection of carriers into PrNiO3 in a controlled way, which can be used to interrogate its intrinsic transport mechanism. We find a nonvolatile resistance decrease when illuminating the system at temperatures below the PrNiO3 metal-insulator transition. The photoinduced change becomes more volatile as the temperature increases. These data help understand the intrinsic transport properties of the nickelate-CdS bilayer. Together with data from a bare PrNiO3 film, we find that the transport mechanism includes a combination of mechanisms, including both thermal activation and variable range hopping. At low temperatures without photoinduced carriers, the transport is governed by hopping, while at higher temperatures and intense illumination the activation mechanism becomes relevant. This work shows a new way to control optically control the low-temperature resistance of PrNiO3. 
    more » « less
  3. Fast and sensitive phase transition detection is one of the most important requirements for new material synthesis and characterization. For solid-state samples, microwave absorption techniques can be employed for detecting phase transitions because it simultaneously monitors changes in electronic and magnetic properties. However, microwave absorption techniques require expensive high-frequency microwave equipment and bulky hollow cavities. Due to size limitations in conventional instruments, it is challenging to implement these cavities inside a laboratory cryostat. In this work, we designed and built a susceptometer that consists of a small helical cavity embedded into a custom insert of a commercial cryostat. This cavity resonator operated at sub-GHz frequencies is extremely sensitive to changes in material parameters, such as electrical conductivity, magnetization, and electric and magnetic susceptibilities. To demonstrate its operation, we detected superconducting phase transition in Nb and YBa2Cu3O7−δ, metal–insulator transitions in V2O3, ferromagnetic transition in Gd, and magnetic field induced transformation in meta magnetic NiCoMnIn single crystals. This high sensitivity apparatus allows the detection of trace amounts of materials (10−9-cc) undergoing an electromagnetic transition in a very broad temperature (2–400 K) and magnetic field (up to 90 kOe) ranges. 
    more » « less
  4. The low temperature monoclinic, insulating phase of vanadium dioxide is ordinarily considered nonmagnetic, with dimerized vanadium atoms forming spin singlets, though paramagnetic response is seen at low temperatures. We find a nonlocal spin Seebeck signal in VO2 films that appears below 30 K and that increases with a decrease in temperature. The spin Seebeck response has a nonhysteretic dependence on the in-plane external magnetic field. This paramagnetic spin Seebeck response is discussed in terms of prior findings on paramagnetic spin Seebeck effects and expected magnetic excitations of the monoclinic ground state. 
    more » « less
  5. Recently, evidence for a conducting surface state (CSS) below 19 K was reported for the correlatedd-electron small gap semiconductor FeSi. In the work reported herein, the CSS and the bulk phase of FeSi were probed via electrical resistivity ρ measurements as a function of temperatureT, magnetic fieldBto 60 T, and pressurePto 7.6 GPa, and by means of a magnetic field-modulated microwave spectroscopy (MFMMS) technique. The properties of FeSi were also compared with those of the Kondo insulator SmB6to address the question of whether FeSi is ad-electron analogue of anf-electron Kondo insulator and, in addition, a “topological Kondo insulator” (TKI). The overall behavior of the magnetoresistance of FeSi at temperatures above and below the onset temperatureTS= 19 K of the CSS is similar to that of SmB6. The two energy gaps, inferred from the ρ(T) data in the semiconducting regime, increase with pressure up to about 7 GPa, followed by a drop which coincides with a sharp suppression ofTS. Several studies of ρ(T) under pressure on SmB6reveal behavior similar to that of FeSi in which the two energy gaps vanish at a critical pressure near the pressure at whichTSvanishes, although the energy gaps in SmB6initially decrease with pressure, whereas in FeSi they increase with pressure. The MFMMS measurements showed a sharp feature atTS≈ 19 K for FeSi, which could be due to ferromagnetic ordering of the CSS. However, no such feature was observed atTS≈ 4.5 K for SmB6
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)